
William Benton
@willb
Red Hat, Inc.

An Introduction to Apache Spark
Big Data Madison: 29 July 2014

About me

• At Red Hat for almost 6 years,
working on distributed computing

• Currently contributing to Spark,
active Fedora packager and sponsor

• Before Red Hat: concurrency and
program analysis research

Forecast

• Background

• Resilient Distributed Datasets

• Spark Libraries

• Community Overview

Background

Processing data in 2005

• MapReduce paper applied very old
ideas to distributed data processing

• Hadoop provided open-source MR
and distributed FS implementations

• MR allows scale-out on commodity
clusters for some real problems

Processing data in 2005

• MapReduce paper applied very old
ideas to distributed data processing

• Hadoop provided open-source MR
and distributed FS implementations

• MR allows scale-out on commodity
clusters for some real problems

Dean & Ghemawat, 2004

Processing data in 2005

• MapReduce paper applied very old
ideas to distributed data processing

• Hadoop provided open-source MR
and distributed FS implementations

• MR allows scale-out on commodity
clusters for some real problems

Dean & Ghemawat, 2004 McCarthy, 1960

Hadoop and MR shortcomings

• MR works well for batch jobs; suffers
for iterative or interactive ones

• Special-purpose extensions for
machine learning, query, etc.

• MR model is not a natural fit for
many programmers or programs

Hadoop and MR shortcomings

• MR works well for batch jobs; suffers
for iterative or interactive ones

• Special-purpose extensions for
machine learning, query, etc.

• MR model is not a natural fit for
many programmers or programs

MAHOUT

Hadoop and MR shortcomings

• MR works well for batch jobs; suffers
for iterative or interactive ones

• Special-purpose extensions for
machine learning, query, etc.

• MR model is not a natural fit for
many programmers or programs

MAHOUT HIVE, PIG

Hadoop and MR shortcomings

• MR works well for batch jobs; suffers
for iterative or interactive ones

• Special-purpose extensions for
machine learning, query, etc.

• MR model is not a natural fit for
many programmers or programs

MAHOUT HIVE, PIG

Hadoop and MR shortcomings

• MR works well for batch jobs; suffers
for iterative or interactive ones

• Special-purpose extensions for
machine learning, query, etc.

• MR model is not a natural fit for
many programmers or programs

MAHOUT HIVE, PIG

DATA SCIENTIST TIME: $460/8 hours
EC2 C3 Large INSTANCE: $0.84/8 hours

Apache Spark

• Introduced in 2009; donated to
Apache in 2013; 1.0 release in 2014

• Based on a fundamental abstraction
rather than an execution model

• Supports in-memory computing
and a wide range of problems

Spark is general

Spark core

Spark is general

Spark core

Graph

Spark is general

Spark core

Graph SQL

Spark is general

Spark core

Graph SQL ML

Spark is general

Spark core

Graph SQL ML Streaming

Spark is general

Spark core

Graph SQL ML Streaming

ad hoc

Spark is general

Spark core

Graph SQL ML Streaming

ad hoc Mesos

Spark is general

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN

Spark is general

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN

APIs for SCALA, Java, Python, and R
(3rd-party bindings for Clojure et al.)

RDDs

Resilient distributed datasets

Resilient distributed datasets

Resilient distributed datasets

Resilient distributed datasets

Resilient distributed datasets

Partitioned across machines by range…

Resilient distributed datasets

Partitioned across machines by range…

Resilient distributed datasets

Partitioned across machines by range…

…or BY HASH

Resilient distributed datasets

Resilient distributed datasets

Failures mean Partitions can disappear…

?

Resilient distributed datasets

Failures mean Partitions can disappear…

…but they can be reconstructed!

RDDs are partitioned,
immutable, lazy collections

RDDs are partitioned,
immutable, lazy collections

TRANSFORMATIONS create new RDDs
that encode a dependency DAG
!

ACTIONS result in executing cluster
jobs & return values to the driver

RDDs (more formally)

• A set of partitions

• Lineage information

• A function to compute partitions
from parent partitions

• A partitioning strategy

• Preferred locations for partitions

RDDs (more formally)

• A set of partitions

• Lineage information

• A function to compute partitions
from parent partitions

• A partitioning strategy

• Preferred locations for partitions
(THESE ARE OPTIONAL)

Creating RDDs

• From a collection: parallelize()

• …a local or remote file: textFile()

• …or HDFS: hadoopFile();
sequenceFile(); objectFile()

• (These all act lazily)

RDD[T] transformations

•map(f: T=>U): RDD[U]

•flatMap(f: T=>Seq[U]): RDD[U]

•filter(f: T=>Boolean): RDD[T]

•distinct(): RDD[T]

•keyBy(f: T=>K): RDD[(K, T)]

RDD[(K,V)] transformations

•sortByKey(): RDD[(K,V)]

•groupByKey(): RDD[(K,Seq[V])]

•reduceByKey(f: (V,V)=>V): 
 RDD[(K,V)]

•join(other: RDD[(K,W)]): 
 RDD[(K,(V,W))]

RDD[(K,V)] transformations

•sortByKey(): RDD[(K,V)]

•groupByKey(): RDD[(K,Seq[V])]

•reduceByKey(f: (V,V)=>V): 
 RDD[(K,V)]

•join(other: RDD[(K,W)]): 
 RDD[(K,(V,W))]

…and many Others including cartesian
product, cogroup, set operations, &C.

Other RDD transformations

• Explicitly repartition and shuffle or
coalesce to fewer partitions

• Provide hints to cache an intermediate
RDD in memory or persist it to
memory and/or disk

(Remember: all transformations are lazy)

RDD[T] actions

•collect(): Array[T]

•count(): Long

•reduce(f: (T,T)=>T): T

•saveAsTextFile(path)

•saveAsSequenceFile(path)

RDD[T] actions

•collect(): Array[T]

•count(): Long

•reduce(f: (T,T)=>T): T

•saveAsTextFile(path)

•saveAsSequenceFile(path)
…and many Others including
foreach, take, sampling, &C.

RDD[T] actions

•collect(): Array[T]

•count(): Long

•reduce(f: (T,T)=>T): T

•saveAsTextFile(path)

•saveAsSequenceFile(path)
…and many Others including
foreach, take, sampling, &C.

(Remember: ALL  
actions are eager)

Example: word count in Spark
val file = spark.textFile("hdfs://...")
!

val counts = file.flatMap(line =>
 line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
!

counts.saveAsTextFile("hdfs://...")

Libraries

Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN

Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution

Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution
model parameter
Optimization

Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution
model parameter
Optimization

Spark MLlib
• Implementations of classic learning

algorithms on data in RDDs

• Regression, classification,
clustering, recommendation,
filtering, etc.

• High performance due to caching,
in-memory execution

Spark SQL features

• SchemaRDD type

• Catalyst: a relational algebra
analysis/optimization framework

• SQL and HiveQL implementations;
Hive warehouse support

• LINQ-style embedded query DSL

Spark SQL example
case class Trackpoint(lat: Double,
 lon: Double, ts: Long) {}
!

// assume points is an RDD of Trackpoints
points.registerAsTable("points")
!

val results =
 sql("""select * from points
 where ts > max(ts) - 600""")

Spark Streaming

• Goal: use the same abstraction for
streaming as for batch or interactive

• Discretized stream abstraction:
streams as sequences of RDDs

Streaming
engine Spark

input
stream

windowed
data (RDDs)

processed
data (RDDs)

Community &  
Applications

Developer community

• https://github.com/apache/spark

• First open-source release in 2010

• 121k lines of code

• 300+ contributors all-time; 80+ in
the last month

• Active and friendly mailing list

User community

• Spark Summit: established in 2013;
growing and expanding

• Lots of cool applications (BI,
medical, geospatial, security, fun)

• Many learning resources

User community

• Spark Summit: established in 2013;
growing and expanding

• Lots of cool applications (BI,
medical, geospatial, security, fun)

• Many learning resources

more than 2x as big in ‘14

User community

• Spark Summit: established in 2013;
growing and expanding

• Lots of cool applications (BI,
medical, geospatial, security, fun)

• Many learning resources

more than 2x as big in ‘14

Spark SUMMIT
EAST: NYC 2015

http://spark-summit.org/
2014/agenda

Thanks!
willb@redhat.com
http://chapeau.freevariable.com

http://chapeau.freevariable.com

