

#### An Introduction to Apache Spark Big Data Madison: 29 July 2014

William Benton @willb Red Hat, Inc.



#### About me

- At Red Hat for almost 6 years, working on distributed computing
- Currently contributing to Spark, active Fedora packager and sponsor
- Before Red Hat: concurrency and program analysis research



#### Forecast

- Background
- Resilient Distributed Datasets
- Spark Libraries
- Community Overview





#### **Processing data in 2005**

- MapReduce paper applied very old ideas to distributed data processing
- Hadoop provided open-source MR and distributed FS implementations
- MR allows scale-out on commodity clusters for some real problems



#### **Processing data in 2005**

DEAN & GHEMAWAT, 2004

- MapReduce paper applied very old ideas to distributed data processing
- Hadoop provided open-source MR and distributed FS implementations
- MR allows scale-out on commodity clusters for some real problems



#### **Processing data in 2005**

- DEAN & GHEMAWAT, 2004 MCCARTHY, 1960
   MapReduce paper applied very old ideas to distributed data processing
  - Hadoop provided open-source MR and distributed FS implementations
  - MR allows scale-out on commodity clusters for some real problems



- MR works well for batch jobs; suffers for iterative or interactive ones
- Special-purpose extensions for machine learning, query, etc.
- MR model is not a natural fit for many programmers or programs



- MR works well for batch jobs; suffers for iterative or interactive ones
- Special-purpose extensions for machine learning, query, etc.
- MAHOUT
  - MR model is not a natural fit for many programmers or programs



- MR works well for batch jobs; suffers for iterative or interactive ones
- Special-purpose extensions for machine learning, query, etc.
  - MR model is not a natural fit for many programmers or programs



- MR works well for batch jobs; suffers for iterative or interactive ones
- Special-purpose extensions for machine learning, query, etc.
- MR model is not a natural fit for many programmers or programs



- MR works well for batch jobs; suffers for iterative or interactive ones
- Special-purpose extensions for machine learning, query, etc.
- MR model is not a natural fit for

many programmers or programs DATA SCIENTIST TIME: \$460/8 HOURS ECZ C3 LARGE INSTANCE: \$0.84/8 HOURS



#### Apache Spark

- Introduced in 2009; donated to Apache in 2013; 1.0 release in 2014
- Based on a fundamental abstraction rather than an execution model
- Supports in-memory computing and a wide range of problems















# Graph SQL ML



## Graph SQL ML Streaming Spark core



# Graph SQL ML Streaming

#### Spark core

#### ad hoc



## Graph SQL ML Streaming Spark core





# Graph SQL ML Streaming





APIS FOR SCALA, JAVA, PYTHON, AND R (3RD-PARTY BINDINGS FOR CLOJURE ET AL.)



RDD5



#### FAILURES MEAN PARTITIONS CAN DISAPPEAR ....







#### FAILURES MEAN PARTITIONS CAN DISAPPEAR .... ---BUT THEY CAN BE RECONSTRUCTED!



#### RDDs are partitioned, immutable, lazy collections



### RDDs are partitioned, immutable, lazy collections

TRANSFORMATIONS CREATE NEW RDDS THAT ENCODE A DEPENDENCY DAG

ACTIONS RESULT IN EXECUTING CLUSTER JOBS & RETURN VALUES TO THE DRIVER



#### **RDDs (more formally)**

- A set of partitions
- Lineage information
- A function to compute partitions from parent partitions
- A partitioning strategy
- Preferred locations for partitions



#### **RDDs (more formally)**

- A set of partitions
- Lineage information
- A function to compute partitions from parent partitions
- A partitioning strategy
  - Preferred locations for partitions

(THESE ARE OPTIONAL)



#### **Creating RDDs**

- From a collection: parallelize()
- ...a local or remote file: textFile()
- ...or HDFS: hadoopFile();
  sequenceFile();objectFile()
- (These all act lazily)



#### **RDD[T] transformations**

- map(f: T=>U): RDD[U]
- flatMap(f: T=>Seq[U]): RDD[U]
- filter(f: T=>Boolean): RDD[T]
- distinct(): RDD[T]
- •keyBy(f: T=>K): RDD[(K, T)]



#### RDD[(K,V)] transformations

- sortByKey(): RDD[(K,V)]
- •groupByKey(): RDD[(K,Seq[V])]
- reduceByKey(f: (V,V)=>V):
   RDD[(K,V)]
- join(other: RDD[(K,W)]):
   RDD[(K,(V,W))]



#### RDD[(K,V)] transformations

- sortByKey(): RDD[(K,V)]
- •groupByKey(): RDD[(K,Seq[V])]
- reduceByKey(f: (V,V)=>V):
   RDD[(K,V)]
- join(other: RDD[(K,W)]): RDD[(K,(V,W))] ...AND MANY OTHERS INCLUDING CARTESIAN PRODUCT, COGROUP, SET OPERATIONS, EC.



#### **Other RDD transformations**

- Explicitly repartition and shuffle or coalesce to fewer partitions
- Provide hints to cache an intermediate RDD in memory or persist it to memory and/or disk

(REMEMBER: ALL TRANSFORMATIONS ARE LAZY)



#### **RDD[T] actions**

- collect(): Array[T]
- count(): Long
- reduce(f: (T,T)=>T): T
- saveAsTextFile(path)
- saveAsSequenceFile(path)



#### **RDD[T] actions**

- collect(): Array[T]
- count(): Long
- reduce(f: (T,T)=>T): T
- saveAsTextFile(path)
- saveAsSequenceFile(path)

---AND MANY OTHERS INCLUDING FOREACH, TAKE, SAMPLING, EC.



#### **RDD[T] actions**

#### (REMEMBER: ALL ACTIONS ARE EAGER)

- collect(): Array[T]
- count(): Long
- reduce(f: (T,T)=>T): T
- saveAsTextFile(path)
- saveAsSequenceFile(path)

---AND MANY OTHERS INCLUDING FOREACH, TAKE, SAMPLING, EC.



#### Example: word count in Spark

val file = spark.textFile("hdfs://...")

counts.saveAsTextFile("hdfs://...")

Lioraries



#### **Spark libraries**

ad hoc

## Graph SQL ML Streaming Spark core

Mesos

YARN



#### **Spark libraries**

















#### Spark MLlib

- Implementations of classic learning algorithms on data in RDDs
- Regression, classification, clustering, recommendation, filtering, etc.
- High performance due to caching, in-memory execution



#### Spark SQL features

- SchemaRDD type
- Catalyst: a relational algebra analysis/optimization framework
- SQL and HiveQL implementations; Hive warehouse support
- LINQ-style embedded query DSL



#### Spark SQL example

case class Trackpoint(lat: Double, lon: Double, ts: Long) {}

// assume points is an RDD of Trackpoints
points.registerAsTable("points")

```
val results =
  sql("""select * from points
     where ts > max(ts) - 600""")
```



#### Spark Streaming

- Goal: use the same abstraction for streaming as for batch or interactive
- Discretized stream abstraction: streams as sequences of RDDs



# **Community & Applications**



#### **Developer community**

- https://github.com/apache/spark
- First open-source release in 2010
- 121k lines of code
- 300+ contributors all-time; 80+ in the last month
- Active and friendly mailing list



#### User community

- Spark Summit: established in 2013; growing and expanding
- Lots of cool applications (BI, medical, geospatial, security, fun)
- Many learning resources



#### User community

#### MORE THAN ZX AS BIG IN '14

- Spark Summit: established in 2013; growing and expanding
- Lots of cool applications (BI, medical, geospatial, security, fun)
- Many learning resources



#### User community

#### MORE THAN ZX AS BIG IN '14

- Spark Summit: established in 2013; growing and expanding EAST: NYC 2015
- Lots of cool applications (BI, medical, geospatial, security, fun)
- Many learning resources



### http://spark-summit.org/ 2014/agenda

# 

#### willb@redhat.com http://chapeau.freevariable.com