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About me

• At Red Hat for almost 6 years, 
working on distributed computing 

• Currently contributing to Spark, 
active Fedora packager and sponsor 

• Before Red Hat:  concurrency and 
program analysis research
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Hadoop and MR shortcomings

• MR works well for batch jobs; suffers 
for iterative or interactive ones 

• Special-purpose extensions for 
machine learning, query, etc. 

• MR model is not a natural fit for 
many programmers or programs

MAHOUT HIVE, PIG

DATA SCIENTIST TIME:  $460/8 hours 
EC2 C3 Large INSTANCE:  $0.84/8 hours



Apache Spark

• Introduced in 2009; donated to 
Apache in 2013; 1.0 release in 2014 

• Based on a fundamental abstraction 
rather than an execution model 

• Supports in-memory computing 
and a wide range of problems
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Spark is general

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN

APIs for SCALA, Java, Python, and R 
(3rd-party bindings for Clojure et al.)
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Resilient distributed datasets

Partitioned across machines by range…

…or BY HASH
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Resilient distributed datasets

Failures mean Partitions can disappear…

…but they can be reconstructed!
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RDDs are partitioned, 
immutable, lazy collections

TRANSFORMATIONS create new RDDs 
that encode a dependency DAG 
!

ACTIONS result in executing cluster 
jobs & return values to the driver
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• A function to compute partitions 
from parent partitions 

• A partitioning strategy 

• Preferred locations for partitions



RDDs (more formally)

• A set of partitions 

• Lineage information 

• A function to compute partitions 
from parent partitions 

• A partitioning strategy 

• Preferred locations for partitions
(THESE ARE OPTIONAL)



Creating RDDs

• From a collection:  parallelize() 

• …a local or remote file:  textFile() 

• …or HDFS:  hadoopFile(); 
sequenceFile(); objectFile() 

• (These all act lazily)



RDD[T] transformations

•map(f: T=>U): RDD[U] 

•flatMap(f: T=>Seq[U]): RDD[U] 

•filter(f: T=>Boolean): RDD[T] 

•distinct(): RDD[T] 

•keyBy(f: T=>K): RDD[(K, T)]
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•groupByKey(): RDD[(K,Seq[V])] 

•reduceByKey(f: (V,V)=>V): 
   RDD[(K,V)] 

•join(other: RDD[(K,W)]): 
   RDD[(K,(V,W))]
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…and many Others including cartesian 
product, cogroup, set operations, &C.



Other RDD transformations

• Explicitly repartition and shuffle or 
coalesce to fewer partitions 

• Provide hints to cache an intermediate 
RDD in memory or persist it to 
memory and/or disk

(Remember:  all transformations are lazy)
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RDD[T] actions

•collect(): Array[T] 

•count(): Long 

•reduce(f: (T,T)=>T): T 

•saveAsTextFile(path) 

•saveAsSequenceFile(path)
…and many Others including 
foreach, take, sampling, &C.

(Remember:  ALL  
actions are eager)



Example:  word count in Spark
val file = spark.textFile("hdfs://...") 
!

val counts = file.flatMap(line =>  
                    line.split(" ")) 
                 .map(word => (word, 1)) 
                 .reduceByKey(_ + _) 
!

counts.saveAsTextFile("hdfs://...")



Libraries



Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN



Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation



Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution



Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution
model parameter 
Optimization



Spark libraries

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN
FIXED-point computation

query execution
model parameter 
Optimization



Spark MLlib
• Implementations of classic learning 

algorithms on data in RDDs 

• Regression, classification, 
clustering, recommendation, 
filtering, etc. 

• High performance due to caching, 
in-memory execution



Spark SQL features

• SchemaRDD type 

• Catalyst:  a relational algebra 
analysis/optimization framework 

• SQL and HiveQL implementations; 
Hive warehouse support 

• LINQ-style embedded query DSL



Spark SQL example
case class Trackpoint(lat: Double,  
  lon: Double, ts: Long) {} 
!

// assume points is an RDD of Trackpoints 
points.registerAsTable("points") 
!

val results =  
  sql("""select * from points  
         where ts > max(ts) - 600""")



Spark Streaming

• Goal: use the same abstraction for 
streaming as for batch or interactive 

• Discretized stream abstraction:  
streams as sequences of RDDs

Streaming 
engine Spark

input  
stream

windowed  
data (RDDs)

processed  
data (RDDs)



Community &  
Applications



Developer community

• https://github.com/apache/spark 

• First open-source release in 2010 

• 121k lines of code 

• 300+ contributors all-time; 80+ in 
the last month 

• Active and friendly mailing list



User community

• Spark Summit:  established in 2013; 
growing and expanding 

• Lots of cool applications (BI, 
medical, geospatial, security, fun) 

• Many learning resources
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User community

• Spark Summit:  established in 2013; 
growing and expanding 

• Lots of cool applications (BI, 
medical, geospatial, security, fun) 

• Many learning resources

more than 2x as big in ‘14

Spark SUMMIT 
EAST:  NYC 2015



http://spark-summit.org/
2014/agenda



Thanks!
willb@redhat.com 
http://chapeau.freevariable.com

http://chapeau.freevariable.com

